Analysis of circulating cell-free DNA in plasma of neuroblastoma patients

Valérie Combaret
Laboratoire de Recherche translationnelle
Centre Léon Bérard -Lyon
Neuroblastoma

- Pediatric tumor of the peripheral sympathetic nervous system
- The most frequent extracranial solid tumor of childhood
- Rare tumor: 130 à 150 new cases per year in France

Criteria useful for the therapy at diagnosis:
- Age
- Stage
- Histology
- Status of MYCN gene
- Genomic profile

Localized NB and metastatic NB < 1year

MYCN without amplification

LINEs protocol

- Surgery +/- chemotherapy

MYCN amplified

HR protocol

Induction chemotherapy + surgery
- high dose of chemotherapy
- stem cells graft
- retinoic acid treatment

Metastatic NB > 1year

at relapse

- Status ALK gene for targeted therapy (AcSé protocol)
Analysis of circulating DNA in neuroblastoma patients

Why this study?
- The tumor is not always available for analyzing genomic alterations

Background

- Division of tumor cells
- Death
- Release of DNA in blood
Analysis of circulating DNA in neuroblastoma patients

- Collect of blood on EDTA tube
- Centrifugation 10 mn at 700g
- Freezing quickly in liquid nitrogen and stored at -80°C

- Extraction DNA : 200 µl of plasma on QIAmp DNA microkit (Qiagen) elution volume : 50µl

P=3.12e-06
Study of MYCN amplification

<table>
<thead>
<tr>
<th>Procedure</th>
<th>2002-2014: analysis by qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYCN</td>
<td>NAGK</td>
</tr>
<tr>
<td>targeted gene</td>
<td>Reference gene</td>
</tr>
<tr>
<td>FAM</td>
<td>Yakima Yellow</td>
</tr>
</tbody>
</table>

2015-2017: analysis by ddPCR

- Standard Curve (serial dilutions of a healthy donor's DNA)
- Dosage of each gene in the sample
- MYCN/NAGK ratio
- MYCN copy number

Results: analysis of >1000 samples

- MYCN DNA sequences can be detected at diagnosis in plasma of patients with MNA tumors

- Circulating MYCN DNA is not detected in plasma of patients without MYCN amplification

- Circulating MYCN DNA is detectable in plasma of patients with localized or metastatic neuroblastoma
 (sensitivity = 10% (% in stage I-II), 75% (stage III) and 85% (stage IV or IVS)

- Circulating MYCN DNA can be used to monitor disease progression

Study of status *ALK* gene by ddPCR

Mutations of *ALK* gene are detected in 8 à 10% NB cases. Presence of *ALK* mutation in Kinase domain

![Activation of different pathways:
- Phosphoinoside 3-Kinase (PI3K)-Akt
- MAP kinase
- STAT3](image)

proliferation and survival of tumor cells.

Identification of 3 major hotspots involving amino acids 1174, 1245 and 1275

Mutations F1174L and R1275Q = 70% *ALK* mutations
RESULTS: DETECTION OF ALK MUTATION IN CIRCULATING DNA

Study population:
- 97 stade IV
- 7 stage II-III with MYCN ampl.
- 10 cases stage III w/o NMYC ampl.

114 circulating DNA samples

- 111 evaluable (97%)
- 87 WT (78%)
- 24 MT (22%)

2 MT (8%)
- F1174L (3520)

11# (46%)
- F1174L (3522)

15# (63%)
- R1275Q (3824)

Concurrent mutations in 4 cases
Comparison of results obtained on circulating DNA and DNA tumor samples after ddPCR analysis

Selection of 60 patients with evaluable tumor DNA and circulating DNA samples

F1174L (3520)

Perfect concordance

<table>
<thead>
<tr>
<th>Tumor DNA</th>
<th>Circulating DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

- Specificity = 100%
- Sensitivity = 100%

F1174L (3522)

<table>
<thead>
<tr>
<th>Tumor DNA</th>
<th>Circulating DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

- Specificity = 92.4%
- Sensitivity = 85.7%

R1275Q (3824)

<table>
<thead>
<tr>
<th>Tumor DNA</th>
<th>Circulating DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

- Specificity = 97.9%
- Sensitivity = 92.3%
Conclusion

- **ALK** mutations detectable in circulating DNA from NB patients using ddPCR

- A good concordance between circulating DNA and DNA tumor samples after ddPCR analysis

- **ALK** mutations are detected in ~20% patients with high-risk neuroblastoma

- Analysis of cfDNA may help capturing tumor heterogeneity

ANALYSIS OF GENOMIC PROFILE FROM CIRCULATING DNA

70 circulating DNA:
- 13 stages 1-2
 - 11 stage 3
 - 39 stage 4
 - 7 stage 4s

- Analysis on ONCOSCAN array (affymetrix)

- Comparison with genomic profile from tumor samples

<table>
<thead>
<tr>
<th>Stage</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>0%</td>
</tr>
<tr>
<td>Stage 2-2b</td>
<td>50%</td>
</tr>
<tr>
<td>Stage 3</td>
<td>72%</td>
</tr>
<tr>
<td>Stage 4</td>
<td>84%</td>
</tr>
<tr>
<td>Stage 4s</td>
<td>86%</td>
</tr>
</tbody>
</table>

Stage 3
50% tumor cells in primary tumor
15.6 ng/ml plasma

Numerical profile
Stage 3
85% tumor cells in primary tumor
330 ng/ml plasma

Segmental case
Stage 4
90% tumor cells in primary tumor
80% tumor cells in bone marrow
1260 ng/ml plasma

Analysis of cfDNA may help capturing tumor heterogeneity
Conclusion

From blood sample, it is possible:

- To analyze circulating tumor DNA and to seek the genomic alterations
- To identify the presence of MYCN amplification or ALK mutations
- To help the clinicians in therapeutic decision
Acknowledgements

Centre Léon BERARD, Lyon, France

Sandrine BOYault
Isabelle IACONO
Stéphanie BREJON
Marjorie CARRERE
Alain PUISIEUX
Jean-Yves BLAY

Institut CURIE, Paris, France

ANGELA BELLINI
VIRGINIE BERNARD
Eve LAPOUBLE
Mathieu CHICARD
Nathalie CLEMENT
Léo COLMET DAAGE
Gaëlle PIERRON
Gudrun SCHLEIERMACHER

Pathologists and Clinicians of the Société Française des cancers de l’enfant